Gerfelin, a Novel Inhibitor of Geranylgeranyl Diphosphate Synthase from *Beauveria felina* QN22047

II. Structural Elucidation

Sir:

Protein geranylgeranylation of small GTP-binding proteins, such as Rho, Rac, Cdc42 and Rab¹), is essential for the function of the modified proteins. Protein geranylgeranylation is a key target for chemotherapeutic intervention in a number of diseases. Because geranylgeranyl diphosphate synthase (GGPP synthase)^{2,3} is involved in a pathway for protein geranylgeranylation, we screened an inhibitor of GGPP synthase, and we have isolated gerfelin (**1a**) from a culture broth of *Beauveria felina* QN22047. In the preceding paper⁴, the taxonomy, fermentation, isolation and biological activities were reported. In this paper, we describe the physico-chemical properties and structural elucidation of **1a**.

The physico-chemical properties of **1a** are summarized in Table 1. **1a** was isolated as a white powder. **1a** is readily soluble in methanol and acetone, but insoluble in chloroform and acetonitrile. The UV spectrum acquired in methanol has λ_{max} of 258 nm (ε 12,900) and 218 nm (ε 34,800). **1a** gave a positive color reaction with molybdophosphoric acid-sulfuric acid reagent and diazobenzene sulfonic acid reagent. The molecular formula of **1a** was established as C₁₅H₁₄O₆ by HRFAB-MS, which

Table 1. Physico-chemical properties of gerfelin(1a).

Appearance	White powder
Molecular formula	C ₁₅ H ₁₄ O ₆
ESI-MS (m/z)	291 (M-H) ⁺
	289 (M-H) ⁻
HRFAB-MS (m/z)	
Found	289.0717
Calcd.	289.0712
UV in MeOH	
$\lambda_{\max}^{nm}(\epsilon)$	258 (12,900)
	218 (34,800)
R _f value ^a	0.25

aSilica gel TLC (Merck Art. 1.05715, CHCl3:MeOH=3:1)

was supported by ¹H and ¹³C NMR spectra. The fragment ion peak observed at m/z 245 (M–COOH) by a negative FAB-MS indicated the presence of carboxylic acid in **1a**. The ¹H NMR spectrum of **1a** exhibited two single-methyls ($\delta_{\rm H}$ 2.12 and $\delta_{\rm H}$ 2.41) and four aromatic methines ($\delta_{\rm H}$ 5.97, $\delta_{\rm H}$ 6.17, $\delta_{\rm H}$ 6.25 and $\delta_{\rm H}$ 6.48). The ¹³C NMR spectrum of **1a** showed 15 carbon signals; two sp^3 methyls, four sp^2 methines, eight sp^2 quaternary carbons and one carboxylic acid carbon ($\delta_{\rm C}$ 172.4). Considering the molecular formula and sp^2 carbon number (twelve) of **1a**, the presence of two benzene rings was proposed.

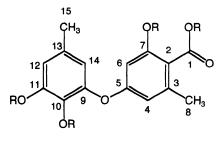
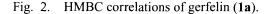

The HMBC⁵⁾ experiment on **1a** showed long range couplings from H-15 ($\delta_{\rm H}$ 2.12) to C-12 ($\delta_{\rm C}$ 113.0), C-13 ($\delta_{\rm C}$ 127.8) and C-14 ($\delta_{\rm C}$ 113.2), from H-12 ($\delta_{\rm H}$ 6.48) to C-10 ($\delta_{\rm C}$ 135.3) and C-11 ($\delta_{\rm C}$ 141.9) and from H-14 ($\delta_{\rm H}$ 6.25) to C-9 ($\delta_{\rm C}$ 146.9) and C-10 ($\delta_{\rm C}$ 135.3) (Fig. 2). Thus, the

Table 2. ¹³C and ¹H NMR data for gerfelin (1a) in DMSO- d_6 .


Position	δ _C (ppm)	δ _H (ppm)
1	172.4	
2	110.2	
3	142.2	
4	109.6	6.17 (1H, d, 2.3)
5	160.7	
6	100.8	5.97 (1H, d, 2.3)
7	163.7	
8	22.9	2.41 (3H, s)
9	146.9	
10	135.3	
11	141.9	
12	113.0	6.48 (1H, d, 1.3)
13	127.8	
14	113.2	6.25 (1H, d, 1.3)
15	20.4	2.12 (3H, s)

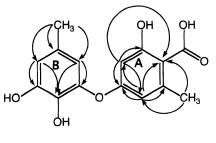
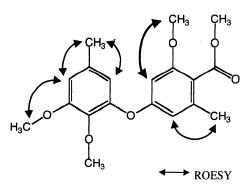

Chemical shifts in ppm from TMS as internal standard. ¹H and 2D NMR spectra of **1a** were recorded in DMSO- d_6 , **1b** were in CD₃OD on a 500 MHz spectrometer at 298 K, while ¹³C NMR sectra were measured on a 125 MHz spectrometer. HMBC spectra were recorded using a 60 ms delay time for long-range C-H coupling.

Fig. 1. Structure of gerfelin (1a) and tetrakis methyl gerfelin (1b).



→ HMBC

carbons constituting one benzene ring (ring B) were established. The attachment of oxygen atom at C-9, C-10 and C-11 was confirmed from 13 C chemical shifts.

The HMBC experiment on **1a** also showed long range couplings from H-8 ($\delta_{\rm H}$ 2.41) to C-2 ($\delta_{\rm C}$ 110.2), C-3 ($\delta_{\rm C}$ 142.2) and C-4 ($\delta_{\rm C}$ 109.6), from H-4 ($\delta_{\rm H}$ 6.17) to C-2, C-3, C-5 ($\delta_{\rm C}$ 160.7) and C-6 ($\delta_{\rm C}$ 100.8) and from H-6 ($\delta_{\rm H}$ 5.97) to C-2, C-4, C-5, and C-7 ($\delta_{\rm C}$ 163.7) (Fig. 2). From these findings, the carbons constituting the other benzene ring (ring A) were confirmed. The attachment of oxygen atom at C-5 and C-7 was clarified from ¹³C chemical shifts. The position of carboxylic acid at C-2 was determined by elimination.

The linkage position of ring A and ring B through a ether bond was determined by chemical means as follow. **1a** was treated with MeI and K_2CO_3 to provide tetrakis methyl Fig. 3. ROESY correlations of tetrakis methyl gerfelin (1b).

Tetrakis methyl gerfelin (**1b**): ¹H NMR (CD₃OD) δ 2.18 (3H, s, H-8), 2.29 (3H, s, H-15), 3.69 (3H, s, OMe-10), 3.73 (3H, s, OMe-7), 3.83 (3H, s, OMe-1), 3.86 (3H, s, OMe-11), 6.27 (1H, m, H-4), 6.44 (1H, m, H-6), 6.48 (1H, m, H-14), 6.73 (1H, m, H-12); ESIMS *m*/*z* 347 (M+H)⁺.

ROESY spectra were measured with a mixing time of 200 ms.

gerfelin (1b), the structure of which was elucidated by spectral data. ROESY (Fig. 3) correlations of H-4 ($\delta_{\rm H}$ 6.27) and Me-8 ($\delta_{\rm H}$ 2.18), H-6 ($\delta_{\rm H}$ 6.44) and OMe-7 ($\delta_{\rm H}$ 3.73), H-12 ($\delta_{\rm H}$ 6.73) and OMe-11 ($\delta_{\rm H}$ 3.86), H-12 ($\delta_{\rm H}$ 6.73) and Me-15 ($\delta_{\rm H}$ 2.29), and H-14 ($\delta_{\rm H}$ 6.48) and Me-15 revealed that ether linkage exist between C-5 and C-9. Thus the gross structure was elucidated as shown in Fig. 1.

Acknowledgment

This study was partly supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

> Satoko Zenitani^a Kazutoshi Shindo^b Satoshi Tashiro^a Mitsuhiro Sekiguchi^c Mie Nishimori^c Kenichi Suzuki^d Masaya Imoto^a,*

^a Department of Biosciences and Informatics,
Faculty of Science and Technology, Keio University,
Yokohama 223-8522, Japan
^b Department of Food and Nutrition,
Japan Women's University,

^{*} Corresponding author: imoto@bio.keio.ac.jp

2-8-1, Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
^c Analysis & Metabolism Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd.,
21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
^d Microbiology Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd.,
1-1-8 Azusawa, Itabashi-ku, Tokyo 174-8511, Japan

(Received March 25, 2003)

Reference

- TAKAI, Y.; T. SASAKI & T. MOTOZAKI: Small GTPbinding proteins. Physiological Reviews 81: 153~208, 2001
- MISAWA, N.; H. OKAZAKI, Y. NOGUCHI, I. TATSUNO, Y. SAITO, T. YASUDA & A. HIRAI: Study on isolation of a

.

geranylgeranyl pyrophosphate (GGPP) synthase cDNA and its expression–Development of a new assay system of gene functions. Proc. of the Japanese Conference on the Biochemistry of Lipids 41: 293~296, 1999

- KUZUGUCHI, T.; Y. MORITA, I. SAGAMI, H. SAGAMI & K. OGURA: Human geranylgeranyl diphosphate synthase: cDNA cloning and expression. J. Biol. Chem. 274: 5888~5894, 1999
- 4) ZENITANI, S.; S. TASHIRO, K. SHINDO, K. NAGAI, K. SUZUKI & M. IMOTO: Gerfelin, a novel inhibitor of geranylgeranyl diphosphate synthase from *Beauveria felina* QN22047. I. Taxonomy, fermentation, isolation, and biological activities. J. Antibiotics 56: 617~621, 2003
- BAX, A. & M. F. SUMMERS: ¹H and ¹³C assignments from sensitivity-enhanced detection of heteronuclear multiplebond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc. 108: 2093~2094, 1986